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TRANSFORMATIONS FOR MULTIVARIATE BINARY DATA

by
P. Bloomfield

Surmary

The interpretation of statistical data may often be simplified by a
preliminary transformation. In the context of contingency tables, one way
of achieving this would be to relabel the possible outcomes, or in other
vords to permute the cells of the table. For a 2d table, certain
periutations have the property that a loglinear model for the cell
probabilities transforms in a simple way. These are, in a sense, linear
transformations of the original variables.

The aim of waking such a transformation is to fit the transformed
data by a sirple model, such as a low order hierarchical nodel or one
in vwhich certain variables are independent of others. A 24 tatle has
been anclysed with this end in view. All the nodels were fitted to the
original data, and to do this a couputer program has been Geveloped vhich

will it nonhicrarchical models by iterative scaling.




" e I
A S e i Mt b2 R RS LS <
- G i A I AP e -

1.

1. Introduction

It is often found that the analysis of statistical data may be simplified
by using a suitably chosen transformation. The most common examples involve
linear transformations of continuous variables. However, Goodman (1971)
gives an example of a contingency table with an apparently rather complex
structure, which may be simplified by describing the responses in terms of
different  variables. In other words, the variables used to index the data
need to be transformed. Professor D. R. Cox has also mentioned in lectures
the need for study of such transformations.

The simplest type of contingency table is the 2d table, indexed by
d variables, each taking just two values. The possible transformations of
such variebles are discussed in Section 2, and the subset of linear
transformations is defined, Linear transformations have the advantage
that a factorial-type model for the probability distribution, such as
those discussed by Bahadur (1961) and Birch (1963), is also transformed in
a simple wey.

The ainm of making a transformation is to siuplify the structure of
the data. For example, one might look for transformed variables to which
a simple hierarchical model (Birch, 1963; Bishop, 1969) could be fitted.
In Section 3 we exanine a 2“ table extracted from the data of Ries and
Smith (1963), vhich has also been analysed by Cox und Taull (2067) and
Goodman (1971). Two transformations are used to show the type of
simplification which might be achieved. In Section 4 we examine a problem
vhich arises in the use of the Deming-Stephan (Deming and Stephan, 1940)

algorithm to fit nonhierarchical nodels.
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2.
2. Transformations

Suppose that X = [xl,...,xa} is a d-variate random varisble such that
each Xy takes the values 0 or 1, Ow l,..., @ . The set of possible
values of § is thus Id » the set of vertices of the uniu ~~dimensional
hyper-cube. A typical vertex will be denoted by i a (il,.g.,id) s Where
each ian 0 or 1, Cm l,...,4d ., If ve draw a random .;umple of n
§'s fron some distribution over Id s the collection of scunts
n, = o, of E's taking the value i ’ ieId »'is a .2d . ntingency table.

- One type of transformation which has been used on suta data is applied
to the cell counts ni ’ i€Id . Thus one might wake a variance-stabilising
transformation, or so&e transformetion designed to revecal additivity
of structure. However, we are concerned in the preseit paper with
transformations not of cell counts but of the origina.. random variable § .

In order to preserve the informatign present in § s we ask that the
transformation should be invertible, and hence the range of the tranforned
variable must contain exactly zd points. It is simplest to assume that
this range is ?n Tact Id ; thus a transformation of § 1s simply a
perautation of Id .

Some of these permutations are of course trivial. A re~ordering of
the components of § will rarely be useful, and similarly a re-coding of
auy component, that is replacing Xa by 1~xa + Thus there are d!ad
trivially distinct versions of any transformation. However, this still

leaves

md o Zd'. o (Zd-l)'o (2-1)
arz®  a

non~-trivial transformations {including the identity), a number which

increases alarmingly for modest values of d. At d = 4 , for instance,

0
its value is around 5 x 101 .
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3.

Clearly these transformations differ in the extent to which they change
the original variables. In the simplest case of a 2 x 2 table, however,
there is essentially only one type of transformetion., We introduce this
vith an example due to D. R. Cox. Consider an experiment in which a

couple are asked their voting intentions. Suppose that we code the
responses as
1 husband votes for Party D
Xln (2.2)
10 husband votes for Party R,

with X2 carrying similar meaning for the wife. If political considera-
tions carried no weight in the chicice of a marital partner, and if there
were no subsequent interaction, then Xl and Xé would be independent,
and would thus represent a simple and useful way of coding the responsas.

However, we could alsc use the coding
Xi =X
% . (o X, =X, (2.3)
1 Xl s X2 H
here Xé records whether the voting intenticas were the same or different.
If it emerged that Xi and Xé wvere independent, then these would be the
natural variables with which to record the responses.,
Por this 2 X 2 case, there is only one other transformation, to

variables

X;' = Xa ’ Xé' = Xé . {a.4)

Since (22 - 1;3/2% . 3, all other transformations nay be obtained
trivially from these three sets of variables.

It is interesting to note that the variables X; ) ; ’ X;' and Xé'
may be written as linear transformations in residue arithmetic modulo 2 .

For Xé = X1 + X2 in this arithmetic, and this is the only new variable

used., Vhen d > 2 , certain transforuations mey still be written in this

S
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way; for example, we couid have had sowes third verigble X5 x Xs = X;' .

However, not all transformations are linear when d > 3 . The easiest

way to see this is by counting. There are ad ~ 1 linear functions of
Xl’son,xd
and omitting the null function in which all variables are excluded. Thus

, corresponding to the inclusion or exclusion of each variable,

the first transformed variable may be chosen in zd -1 possible ways.
The second must be distinct from the Tirst and may thus be chosen in
2d « 2 ways. The linear space gencrated by thes: two contains 3 non-
null functions; hence the third variable must be chosen from the remaining
2d - 4 ., Continuing the argument, the total number of invertibdle linear
transformations is

281 2%z 2% y,. 2%y
Each of these occurs in d! trivially distinct forms; the possibility of
recoding any variable, that is interchanging 1 and ¢ has been eliminated.
This leaves 8 total of
(2d~1)(ad~z),..(zd—zd'l)/d'. ,

essenticlly distinet transformations, including as before the identity. This

may be rewritten as

d
L4{d-1)2 r Q
Ny =2 : 0351 {(27-1) , (2.5)

ai

a number which still increases rapidly as a fuaction of d . However, since

. d-1
nd n (2 ";)2 — t’idwl 3 (2.6)
which may be compared with
a4
my = {2 ;ii. Myq ? (2.7)
a{2” .1t
it is clear that n. increases far mere slowly then n Thus the set of

a a -’
linear transformations is an incressingly small subset of the set of all

transformations.
A comparison with normal theory suggests that in a first discussion of

transformations, we should restrict ouxr attention to linear transformations.
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There is, however, a more compelling reason for doing this, to discuss
vhich we need to consider the log-linear model (Birch, 1963) for the
probabilities in a 2k table. We begin by going back to the 22 exanple.
Let p%.g pr(§ ® i) - pr(Xl = il, X, = ia) s il, 12 = 0,1 . Assuming that
Py >0 for each i , we let gi = log Pi . Then the table of ¢&'s nay
b; deconposed as in a factorial experiment, as the sum of different com-

ponents. For our purposes, this is most conveniently written
T

1] .
gi a jéIa >‘.3‘ (-1)5 &, iaz ) (2.8)

£

or in full,

Eoo ™ Moo ¥ MNox Mo My o

501 ® )'oo " )"01 + >s'10 - ?‘11 ’

(2.9)

- A - A
810 = Moo ¥ o1 Mo My

= A
g11 00 hbl kla 11
The superscript T on a vector or metrix denotes transposition. Here hll

is the "interaction" between X1 and X% o Vaen it vanishes, X, and X2

1
are independent.

Now X' = TX , where

A

0
Tn[l ]"
R S §
1 T

note that T“l s T in this residue arithmetic; and also that (TT)" o T
Thus
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1
p; = pr(g' = 1) \

= Pri{TX = i)

- pr(X = T M)

= P _

7 11 {2.10)
(11" 5
= .Z >". - ~ ~ ~
= Jel, 3 -2
. iTTT~lj
= eX'p 2%12 ?\g (“l)vv ~ ~

T
ik

~ ~

t
Thus the loglinear model for the probabilities DP; , ieI2 » has the same

coefficients as that for P; s :‘LeI2 , except that they have been permuted

according to the transposed linear operator 1"r in the sense that
1

Ak s A 1‘

~ ~

[al

. Now the condition for independence of X; and Xé is

4

]

!
' ‘s ' . .
hll 0= A01 y and similarly X1 and X2 are independent if xlo =0 .

Thus one mey tell {rom the coefficients in the model for the original

variables vhether either transformation will give rise to independent

variables,

The same argument extends readily to 4 > 2 , The expansion (2.8)
for the log probabilities is still valid provided 12 is replaced by Id .

A linear transformation can be written es X' = TX , where T is a matrix

~n

of zerces and ones, having an inverse in residue arithmetic modulo 2 ;

it is not in general true that T-l « T . The sequence of manipulations

(2.10) does not depend on @ , and hence it is true for 4 > 2 that the

coefficients are permuted according to T'lr s that is A& = ATTk 5 keId .

~ ~

The possible gains from malking such a transformation are discussed in the

next section.

A different generalisation is to tables in which each wvariable may

take more than two values. The mcst obvious neneralisation is to tables in
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vhich each variable takes r values, 0,...,7r-1 . The natural arithmetic
here is residue arithmetic modulo r , and the natural decomposition is the

finite Fourier transform. Specifically, if w « exp(2mi/r) , then

E, = logp; = log{pr(X=1)}

mey be written as
T

iy .
gi = j’é“I Nj “7~ ~ 9 ielr’d ? (2011)
~ =~ rd g

vhere Ir,d is the set of all d-tuples (11,..., id) vhere 0 < ia'< r,
O= 1ly.es, & . The inverse formula, defining the N's , is

T,
-1 -ji
hj s (rd) iéI gi WoN o~ (2.12)
-~ r,d W

Now suppose that T is a (dxd) matrix vhose entries tij are integers
satisfyirg o < tij <r,i, J~ 1y.4.y @, and that there exists an inverse
7°! in residue erithmetic modulo r . Let X' = TX in this arithmetic.

~

Then

Pr{X! = i) w pri{X = T M)

which simplifies to

expl, % b8
EéIr,d ~ o~

Trhus as in the 2d case, the effect of this transformation is simply to

permute the coefficients according to P ; that is RB = hT“j .

Mhis genereslisation is, however, rether restrictive in its structure.
The Fourier decomposition is most suitable when the categories are ordered,
but is essentially invarisnt under cyclic permutations of these categories.
The type of data for which this seems nabural would be where the cavegories
could meaningfully be erranged in a circle, an unusuval situation. Hence-

forth we shall only consider binary, that is dichoicnous, veriebles.
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It should be noted that the property that the rodel is transformed in

a simple way when the variables are transforued linearly (in the present

sense) is not restricted to the loglinear model described above. Clearly

the same argurent applies if any function of the cell probabilities is

expanded in a factorial form, such as in the representation proposed by

Bahadur (1961).

3. Motivation, and an example

The only reason mentioned as yet for transforming the variables by

vhich a 2d contingency table is classified has been to attain independence.

For 4 >2 , one will rarely be able to transform to @ mutually independent

variables, but one might hope to find variables which could be partitioned

into 8< d mutually independent blocks. Another possibility is that of

conditional independence. Each of these distributions may be described in

terms of restricted loglinear models.

The geueral version of (2.8) is

e AT 5 mee

.t
log{pr(x = 1)} u jéI Aj (-1)1 3 iel (3.1}

~ o~y

€l J d
In a restricted loglinear model, the summation is restricted to some subset

YL YL

JC Id , Thus effectively we constrain those A's whose subscripts do not

lie in J to be zero, Since exp(kb) is merely 2 normalising constant,

~

ve shall alweys suppose that 0 ¢ J .,

The models of block-wise independence and of conditional independence
correspond to choices of J having certain specific structures; see
Goodman (1570)., These structures all possess the property of being

hicrarchical, which may be defined as follous., For i,jeId , we write

§ . et x e ey g M p A TS e s 8
l P A Sy Wo L N T s T L M oA RAIE Jp e M+ Rt X r e aayasn T
¥ S
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isg if iaf_ ja ; 0w 1,40.,d , Then the set J 1is hiererchical if for
e%ery 2 €Jd , J contains every i < g . It may ve seen from (3.1)
that the parameter hi describes the degree of interaction of the variables
(Xa : ia" 1) » Thus~a model is hierarchical if whenever the interaction
of a particular set of variables is included in the model, the interactions
of all subsets of those variubles are also inclnded. The class of
hierarchical models is evidently a natural one to consider. Ve observe
here that this notation is in conflict with that of other authors, vho have
in general indexed interactions by the list of ¢'s for which ja =1,
that is, by a subsev of (1,..., 4) . A nodel then consists of a family of
such subsets, =nd is hierarchical if the family of subsets is hierarchical
in the usual sense. Huwever, our present notation seems to be the most
naturas one to use in the present context.

One's.aim in meking a transformation of the kind discussed here would
be to find a hierarchical model which fits the transformed data, and
preferably a model which displays extra structure of the types mentioned
above.

As an example, we consider some data extracted from those of Ries and

Smith (1963), and shown in Table 1, In * ¢ original data, the quality of
water had a third possible value (medium); we have omitted this in order to
leave a 2u table. As a first stew we fitted the unrestricted model,
J = Iu ; the values of the parameters are given in Table 2. Tiis analysis
ariounts merely to a factorial analysis of the log counts. These data are
rather unusual in that some two-variable interactions are smaller in
ragnitude than some three-variable interactions. This is similar to a
feature detected in the complete data by Goodman (1971).

However, if we define new variables by Xi = X1 + X2 nodulo 2 ,

X& = Xy = 2,34 , then the parameters are permuted as has been
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described above. The pernubed paraneters are given in Table 3. In the
transformed table, the highest ranked threc-varisble interaction ranks 10th
{(down from 11th), and the highest ranked two-variable interaction ranks
13th (down from 14th). These changes, while not dranatic in themselves,
are accompanied by others which also tend to reduce the weight of the higher
order interaction terms. One simple way to neasure this is by the sums of
squares of the parameters, shown in Table 6. The larger paraneter values
have been permuted into 'interactions' involving only one variable each,
that is into 'main effects', In fact, the model in which these new
variables §' are independent fits the data well (X2 T 13 on 11 degrees
of freedon).

llowever we shell examine the data a little further, to see vhat else
may be accomplished. For example, one right wish to have the highest
ranked three-variable interaction rather smaller. If we define & second
transformation by Xé' = Xl + Xa’ Xé; = X 0= 1,3,4, then the parameters
are pernuted as in Table 4. The model of complete indevendence is now less
tenable (X2 ¥ 18 on 11 degrces of freedom, betwecen the upper 5% and
10% pointsj. However, the model in which 2all nmein effects and all two-
variable interactions are included, but no higher order terms, fits this
transformation rather better. The e values, each with five degrees of
freedom, are 6.0 for variables ,).(’ 3.6 for variables }E' and 1.9
for variables E". These values show that this model in fact fits the
original variables adequately. However, they also illustrote the
possibility of improving the fit by transformation; a similar three-fold
reduction of x? in other data could be quite dramatic.

Gocdman (1971), examining the complete table, suggested that the

%

3, quxu

would simplify the data. The resulting permuted paramters are given in

. » %* 2
transformation Xl a Xl + X2 s X2 o X2 + X3 3 X3 = X




‘
1

§

5

EUR W

P R

11,
Table 5. The corresponding row of Table 6 suggests that the model with no
three- or four-variable interactions should fit slightly better than for
variables E" . This is borne uut by a X2 value of around 1.5

(on 5 degrees of freedom).

4, Istimation

The accepted procedure,for estimating the parameters in a restricted
loglinear nmodel is that of maximum likelihood. Furthermore, it has been
shown that when the model is hierarchical, this fitting may be performed by

an algor? “m known variously as iterative scaling and the Deming-Stephan

algorithi; see for example Ireland and Kullback (1968). Thus one way to
search for a suitable transformation to be applied to the data would be
to perform various transformations, and then to sece whether the transformed
data are adequately fitted by some hierarchical model, as fitted by iterative
gcaling.
Fortunately there is a simpler procedure available., For as we have
shoun above, the loglinear wodel transforis in a simple way vhen the data
are ‘transformed linearly. Thus any model for the transformed data
corresponds to & model for the original data, and hence may be fitted without
verforning the transformation. An example of this is given in this Section.
However, a hierarchical niodel for the transformed data will not in
general correspond to a hierarchical model for the original data. Thus
we nust consider the maximum likelihood fitting of non-hierarchical imoaels.
Fortunately again, this may be achieved by using iterative scaling, although

not in the usual forn.
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The logarithm of the likelihood function for the parameters

(Aj » Jed) of a restricted wmodel, given observed data (ni s ieId) is

) 1y - .5 1)+ .5 n ) .
login!) iZId 1og(ni ) + 16Id n, log(pl) {4ol)
where na Zn, , and
: LT,
c.‘->\ "'?:'20 1'
Log(p, ) 3%3 3 (-1) (n.2)

The part of this which depends on the paraneters simplifies to
T

gy
sEx My sk omy (FULhe Eg A

~ ~ ~ d ~ ~ ~

a, 4.,3)
3 ‘

say. The paremeters are ol course subject to the constraint Epi =1 .

~

Thus (4.3) may be maximised by the method of the undetermined multiplier.

Let
A, JE€ET) N o= S_A, &,
Sthy s 60 = S = F Ny 2
'y
-8 ° -
Then
3 1'% i3
S -] - e z "1 ~ o~ .8 A’. "1 ~ o~ keJ
Bt ety it

~

are the equations to be solved. Since 0€J , the first of these is

T
= 8 = ~
8, iéld exp(jéJ hj (-1)s &)

But &, =1, the total number of observations, and the sum on the right

~

hand side is constrained to equal 1, Thus 6 = n , and the remaining

equations to be solved are

T T
ik i3
£ 3 - ~ o~ . )'- - ~ ~ = L4
~Y . (-1) exp{géJ 3 (-1)% =) aE/n , EeJ

or
1%k

~
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A complementary set of equations, implied by }\j =0, Jj#J, are

~

LT
1 J .

~

.T
Iet P, be the set of i for which (-1)a K.1, end M, be the

~

complement in Id of Pk . Then (4.4) may be written

1l 1
By Ps % By Psomom n, == .%. n, ,
1ePk i icNk i n 1§Pk i n igﬂk i

where we have rewritten ak on the right hand side of the eguation in the

same way as the left hand side has been rewritten. But since the sum of the
tvo terms on each side of the equation equals one, it implies that

1
i%p P =}

~

R she N
1% niep i

14

(4.5)

1
i%rrk pi~ " & ;émk ni .

These equations have an especially simple interpretation when k has
only one entry equal to 1 , Suppose koz = 1, kB =0, B4 0a. Then

Pk = ('J;GId ¢ i

o® 0) , and hence

i (4.6)

is the probability that Xa o 0 . Thus the equations then state that in the
Titted distwibution, the probability that Xa = 0 should equal the obsexrved
proportion of tiuses that this event occurred., If the two terms on the left
hand side of (4.5) are called a fitted one-variable marginal subtable,
then the fitted marginal subtable for Xa has to coincide with the
observed marginal subtable. "

When 15 is not of this form, the interpretation is not so clear,

However, if the model is hierarchical, then it has been shown that the

equations may be grouped, usually not into disjoint sets, in such a way that
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each group implies that a fitted subtable should coincide with an
observed subtable. Hovever, these subtables are not in general one-
variable subtables, but describe the joint distribution of a number of
variables. TFurthermore, there exists a minimal set of such marginal
subtables,

In the present context, a different interpretation is more suitable.
Define a transformed variable by Y = ’ST}E modulo 2 . Then (1.6) is the
probability that Y = 0 , and equations (&.5) state that the fitted
marginal distribution of Y should equal its observed marginal distribution.
When only the a'th entry of E takes the value 1 , Y= Xa , end hence
this observation is in agreement with our earlier statement. Thus each
equation in (4.4) may be interpreted as forcing a fitted onv-variable
subtable to coincide with its observed counter-part, except that the
distribution described by the table may be thet of a transformed veriable.

The Deming-Stephan algorithm for solving these equations is an
iterative procedure. One begins with a probability distribution belouging
to the model being fitted; since the distribution which attached probability
z"d to each outcome belongs to any model, this is usually chosen as the
starting point. Each step of the iteration consists of a nunber of
substeps, one for ecach marginal sudbtable which is constrained. The substep
corresponding to a particular subtable consists of rescaling the distribu-
tion so as to satisfy the constraint, each of the probabilities vwhich are
surmed to give one element of the subtable being rescaled by the same anount.

In fitting a hierarchical model, this procedure is applied to the
minimal set of marginal subtables. For nonhierarchical niodels, however,
this cannot be done, Since the nonhierarchical models we are interested
in are hierarchical in terms of some transformed variables, one solution

to this problem would be to transform the variables, that is permute the




15.
table, and then fit the corresponding hierarchical model, An alternative
solution, in terms of the original veriables, is to use the set of one-
varieble marginal subtebles described above; this was the procedure used
by the author., One disadvantage of this procedure is that it may fail to
converge in a finite number of iterations when the more sophisticated
version would, and in general it converges more slowly, To compensate for
this, a modified version was used, in which instead of cycling through the
set of constraints to be fitted, the one which is most seriously being
violated is found, and then the fitted table is forced to fit it. It is
not known how this procedure compares with the usual one when the model
being fitted is, in fact, hierarchical.

The X goodness of fit statistics referred to in the previous
Section are calculated as minus twice the logarithm of the likelihood
ratio, testing the model being fitted against the saturated model, in

which 211 parameters are allowed to be nonzero. That is,

,2
X" » igld ni log n, - n logn - iéId ni log pi )

~ ~ ~ ~ ~

where n « ZI n, is the total number of observations, and p, , i€l ,
ieda. i ~

~ ~

are the fitted probabilities under the model being tested. The last sun

may be rewritten

13

O i T T N I Ao(e1) s
i%3

- Er N 1§Id ng (-1 3

A
in the notation of (%4.3) . Thus X may be calculated from the data

n, , i€l , eand the fitted values of the parameters Aj » 1eJ . In the

-
~ ~
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computer program used to fit the models discussed in the previous Section,
the change in the value of Ve was used both to select the parameter to be

modified, and as a criterion for terminating the iteration.
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Table 1

Y SRR LT

Preferences of Brand X over Brand M

e O

ey A;"/ﬁ»('}r.:a" R

X =0 X = % = X, =

52 68 52 37

] 30 y2 L3 2y
53 63 L9 57

] 27 29 29 19

preferred brand il

preferred brand X

previous non-user of M

previous user of M

low temperature

high temperature

hard water

sof't water
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Table 2

i i
L, 2, 3

4

» vith roank

(in terms of absolute magnitude) in parentheses

i 0 ]
ll x 0 il a 1 11 s O ll = 1

i o «2.8361 (16) 0.0216 (5) 0,0836 (12) ~0,1278 (14)
i, =

i 1 0.2955 {15) -0,0531 {10) 0.0148 (2) 0.0490 (8)

i ) 0.0892 (9} 0,0182 (4} 0.0174% (3) -0,0633 (11)
i =

i 1 00887 (13) 0.0313 (6} 0.0368 (7))

«0,0101 (1)




Table 3

t t
Values of M o A
i i

X , with rank

(in terms of absolute value) in parentheses

i2 o 0 12 = 1
11-0 llal lluo 11=1
) iy =0 | ~2.8361 (16) | -0.1278 (1) 0.0836 (12) 0.0216 (5)

i, = 0 |-

13 e 1 0.2955 (15) 0.0490 (8) 0.,0148 (2) =0,0531 (10)

i3 a 0 0.0492 (9) -0.0633 (1) 0.0178 (3) 0.0182 (4)
i =1
4

13 = 1 -0.0887 (13) -0,0101 (1) 0.036% (7) 0.0313 (6)
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Table 4

l. it 1

n Values of A, = A .+ .« 5 with rank
i i i, 1
{in terms of absolute magnitude} in parentheses

-: 12 = 0 12 w1
‘Z lluo 1131 11=0 11:31
g - i;= 0 | -2.8361 (16) 0.0216 (5} | -0.1278 (14) 0.0835 (12)
i . B 0 )

13u 1 0.2955 (15) -0,0531 (10) 0,0490 ({8} 0.0148 (2)

,‘\
13 i;=0 0.0492 (9) 0.0182 (i) ~0.0633 (11) 0,0174  (3)
E i3 «1 -0,0887 (13) 0.0316 (6) -9.010% (1) 0.0364 (7)

|




P

Values of Af o
i

Tahle 5

*

A,
i

i i
1, 2, 3

, With rank

(in terms of absolute magnitude) in parentheses

= 0

[

PRSP

-2.8361 (16)

-2,1278 {(14)

0.0148 {(2)

0.2955 (15)

0.0490 (8)

0.0836 (12)

~0,0633 (11)

0,036 (7)

-0.,0887 (13)

-0,0101 (1)

0.0174 (3)

s

b
24
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-0,0531 (10)
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Table 6

oy

, Sunis of' squares of fitted paraneters,

; grouped by level of interaction

i
-2 u, Humber of variables in intervaction

4 1 2 3 !

} *
K

Humber of such interactions I 6 I 1
variebles X 0.0972 0,0279 0,0087 0,0001
‘4 variables X' 0.1131 0.0153 0,006 0.0010
4 variables X" 0,1065 | 0.0z24% | 0.0016 | 0.0013
1 8 ~
1 ‘ )
3 variables X 0.,1063 0,025y 0,0019 0.,0003
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